All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ZeLa: Advancing Zero-Shot Multilingual Semantic Parsing with Large Language Models and Chain-of-Thought Strategies

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AW6M42CKW" target="_blank" >RIV/00216208:11320/25:W6M42CKW - isvavai.cz</a>

  • Result on the web

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195893284&partnerID=40&md5=d699e38af5aa430cd4b8b022a4c01388" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195893284&partnerID=40&md5=d699e38af5aa430cd4b8b022a4c01388</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    ZeLa: Advancing Zero-Shot Multilingual Semantic Parsing with Large Language Models and Chain-of-Thought Strategies

  • Original language description

    In recent years, there have been significant advancements in semantic parsing tasks, thanks to the introduction of pre-trained language models. However, a substantial gap persists between English and other languages due to the scarcity of annotated data. One promising strategy to bridge this gap involves augmenting multilingual datasets using labeled English data and subsequently leveraging this augmented dataset for training semantic parsers (known as zero-shot multilingual semantic parsing). In our study, we propose a novel framework to effectively perform zero-shot multilingual semantic parsing under the support of large language models (LLMs). Given data annotated pairs (sentence, semantic representation) in English, our proposed framework automatically augments data in other languages via multilingual chain-of-thought (CoT) prompting techniques that progressively construct the semantic form in these languages. By breaking down the entire semantic representation into sub-semantic fragments, our CoT prompting technique simplifies the intricate semantic structure at each step, thereby facilitating the LLMs in generating accurate outputs more efficiently. Notably, this entire augmentation process is achieved without the need for any demonstration samples in the target languages (zero-shot learning). In our experiments, we demonstrate the effectiveness of our method by evaluating it on two well-known multilingual semantic parsing datasets: MTOP and MASSIVE. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Jt. Int. Conf. Comput. Linguist., Lang. Resour. Eval., LREC-COLING - Main Conf. Proc.

  • ISBN

    978-249381410-4

  • ISSN

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    17783-17794

  • Publisher name

    European Language Resources Association (ELRA)

  • Place of publication

  • Event location

    Torino, Italia

  • Event date

    Jan 1, 2025

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article