ZeLa: Advancing Zero-Shot Multilingual Semantic Parsing with Large Language Models and Chain-of-Thought Strategies
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AW6M42CKW" target="_blank" >RIV/00216208:11320/25:W6M42CKW - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195893284&partnerID=40&md5=d699e38af5aa430cd4b8b022a4c01388" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195893284&partnerID=40&md5=d699e38af5aa430cd4b8b022a4c01388</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
ZeLa: Advancing Zero-Shot Multilingual Semantic Parsing with Large Language Models and Chain-of-Thought Strategies
Original language description
In recent years, there have been significant advancements in semantic parsing tasks, thanks to the introduction of pre-trained language models. However, a substantial gap persists between English and other languages due to the scarcity of annotated data. One promising strategy to bridge this gap involves augmenting multilingual datasets using labeled English data and subsequently leveraging this augmented dataset for training semantic parsers (known as zero-shot multilingual semantic parsing). In our study, we propose a novel framework to effectively perform zero-shot multilingual semantic parsing under the support of large language models (LLMs). Given data annotated pairs (sentence, semantic representation) in English, our proposed framework automatically augments data in other languages via multilingual chain-of-thought (CoT) prompting techniques that progressively construct the semantic form in these languages. By breaking down the entire semantic representation into sub-semantic fragments, our CoT prompting technique simplifies the intricate semantic structure at each step, thereby facilitating the LLMs in generating accurate outputs more efficiently. Notably, this entire augmentation process is achieved without the need for any demonstration samples in the target languages (zero-shot learning). In our experiments, we demonstrate the effectiveness of our method by evaluating it on two well-known multilingual semantic parsing datasets: MTOP and MASSIVE. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Jt. Int. Conf. Comput. Linguist., Lang. Resour. Eval., LREC-COLING - Main Conf. Proc.
ISBN
978-249381410-4
ISSN
—
e-ISSN
—
Number of pages
12
Pages from-to
17783-17794
Publisher name
European Language Resources Association (ELRA)
Place of publication
—
Event location
Torino, Italia
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—