All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mitigating Data Scarcity in Semantic Parsing across Languages: the Multilingual Semantic Layer and its Dataset

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AAR3G7CRK" target="_blank" >RIV/00216208:11320/25:AR3G7CRK - isvavai.cz</a>

  • Result on the web

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205312109&partnerID=40&md5=f05eb79ade11970aac0d746ab2512c19" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205312109&partnerID=40&md5=f05eb79ade11970aac0d746ab2512c19</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Mitigating Data Scarcity in Semantic Parsing across Languages: the Multilingual Semantic Layer and its Dataset

  • Original language description

    Data scarcity is a prevalent challenge in the era of Large Language Models (LLMs). The insatiable hunger of LLMs for large corpora becomes even more pronounced when dealing with non-English and low-resource languages. The issue is particularly exacerbated in Semantic Parsing (SP), i.e. the task of converting text into a formal representation. The complexity of semantic formalisms makes training human annotators and subsequent data annotation unfeasible on a large scale, especially across languages. To mitigate this, we first introduce the Multilingual Semantic Layer (MSL), a conceptual evolution of previous formalisms, which decouples from disambiguation and external inventories and simplifies the task. MSL provides the necessary tools to encode the meaning across languages, paving the way for developing a high-quality semantic parsing dataset across different languages in a semi-automatic strategy. Subsequently, we manually refine a portion of this dataset and fine-tune GPT-3.5 to propagate these refinements across the dataset. Then, we manually annotate 1,100 sentences in eleven languages, including low-resource ones. Finally, we assess our dataset's quality, showcasing the performance gap reduction across languages in Semantic Parsing. Our code and dataset are openly available at https://github.com/SapienzaNLP/MSL. © 2024 Association for Computational Linguistics.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proc. Annu. Meet. Assoc. Comput Linguist.

  • ISBN

    979-889176099-8

  • ISSN

    0736-587X

  • e-ISSN

  • Number of pages

    25

  • Pages from-to

    14056-14080

  • Publisher name

    Association for Computational Linguistics (ACL)

  • Place of publication

  • Event location

    Bangkok

  • Event date

    Jan 1, 2025

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article