Grounded Sequence to Sequence Transduction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10424336" target="_blank" >RIV/00216208:11320/20:10424336 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pDf7olbdq0" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pDf7olbdq0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JSTSP.2020.2998415" target="_blank" >10.1109/JSTSP.2020.2998415</a>
Alternative languages
Result language
angličtina
Original language name
Grounded Sequence to Sequence Transduction
Original language description
Speech recognition and machine translation have made major progress over the past decades, providing practical systems to map one language sequence to another. Although multiple modalities such as sound and video are becoming increasingly available, the state-of-the-art systems are inherently unimodal, in the sense that they take a single modality-either speech or text-as input. Evidence from human learning suggests that additional modalities can provide disambiguating signals crucial for many language tasks. Here, we describe the How2 dataset, a large, open-domain collection of videos with transcriptions and their translations. We then show how this single dataset can be used to develop systems for a variety of language tasks and present a number of models meant as starting points. Across tasks, we find that building multi-modal architectures that perform better than their unimodal counterpart remains a challenge. This leaves plenty of room for the exploration of more advanced solutions that fully
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX19-26934X" target="_blank" >GX19-26934X: Neural Representations in Multi-modal and Multi-lingual Modeling</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Journal on Selected Topics in Signal Processing
ISSN
1932-4553
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
577-591
UT code for WoS article
000543960100010
EID of the result in the Scopus database
2-s2.0-85087505272