All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Deep Learning of Heuristics for Domain-independent Planning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10424778" target="_blank" >RIV/00216208:11320/20:10424778 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.5220/0008950400790088" target="_blank" >https://doi.org/10.5220/0008950400790088</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5220/0008950400790088" target="_blank" >10.5220/0008950400790088</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Deep Learning of Heuristics for Domain-independent Planning

  • Original language description

    Automated planning deals with the problem of finding a sequence of actions leading from a given state to a desired state. The state-of-the-art automated planning techniques exploit informed forward search guided by a heuristic, where the heuristic (under)estimates a distance from a state to a goal state. In this paper, we present a technique to automatically construct an efficient heuristic for a given domain. The proposed approach is based on training a deep neural network using a set of solved planning problems from the domain. We use a novel way of generating features for states which doesn&apos;t depend on usage of existing heuristics. The trained network can be used as a heuristic on any problem from the domain of interest without any limitation on the problem size. Our experiments show that the technique is competitive with popular domain-independent heuristic.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-07252S" target="_blank" >GA18-07252S: MoRePlan: Modeling and Reformulating Planning Problems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ICAART: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 2

  • ISBN

    978-989-758-395-7

  • ISSN

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    79-88

  • Publisher name

    SCITEPRESS

  • Place of publication

    SETUBAL

  • Event location

    Valletta

  • Event date

    Feb 22, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000570769000007