All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Heuristic Learning in Domain-Independent Planning: Theoretical Analysis and Experimental Evaluation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439480" target="_blank" >RIV/00216208:11320/21:10439480 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-71158-0_12" target="_blank" >https://doi.org/10.1007/978-3-030-71158-0_12</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-71158-0_12" target="_blank" >10.1007/978-3-030-71158-0_12</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Heuristic Learning in Domain-Independent Planning: Theoretical Analysis and Experimental Evaluation

  • Original language description

    Automated planning deals with the problem of finding a sequence of actions leading from a given state to a desired state. The state-of-the-art automated planning techniques exploit informed forward search guided by a heuristic which is used to estimate a distance from a state to a goal state. In this paper, we present a technique to automatically construct an efficient heuristic for a given domain. The proposed approach is based on training a deep neural network using a set of solved planning problems as training data. We use a novel way of extracting features for states developed specifically for planning applications. Our experiments show that the technique is competitive with state-of-the-art domain-independent heuristic. We also introduce a theoretical framework to formally analyze behaviour of learned heuristics. We state and prove several theorems that establish bounds on the worst-case performance of learned heuristics.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-07252S" target="_blank" >GA18-07252S: MoRePlan: Modeling and Reformulating Planning Problems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    AGENTS AND ARTIFICIAL INTELLIGENCE, ICAART 2020

  • ISBN

    978-3-030-71158-0

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    26

  • Pages from-to

    254-279

  • Publisher name

    SPRINGER INTERNATIONAL PUBLISHING AG

  • Place of publication

    CHAM

  • Event location

    Valletta

  • Event date

    Feb 22, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000722435000012