Heuristic Search Optimisation Using Planning and Curriculum Learning Techniques
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00373634" target="_blank" >RIV/68407700:21230/23:00373634 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-031-49008-8_39" target="_blank" >https://doi.org/10.1007/978-3-031-49008-8_39</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-49008-8_39" target="_blank" >10.1007/978-3-031-49008-8_39</a>
Alternative languages
Result language
angličtina
Original language name
Heuristic Search Optimisation Using Planning and Curriculum Learning Techniques
Original language description
Learning a well-informed heuristic function for hard planning domains is an elusive problem. Although there are known neural network architectures to represent such heuristic knowledge, it is not obvious what concrete information is learned and whether techniques aimed at understanding the structure help in improving the quality of the heuristics. This paper presents a network model that learns a heuristic function capable of relating distant parts of the state space via optimal plan imitation using the attention mechanism which drastically improves the learning of a good heuristic function. The learning of this heuristic function is further improved by the use of curriculum learning, where newly solved problem instances are added to the training set, which, in turn, helps to solve problems of higher complexities and train from harder problem instances. The methodologies used in this paper far exceed the performances of all existing baselines including known deep learning approaches and classical planning heuristics. We demonstrate its effectiveness and success on grid-type PDDL domains, namely Sokoban, maze-with-teleports and sliding tile puzzles.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Progress in Artificial Intelligence, 22nd EPIA Conference on Artificial Intelligence, EPIA 2023, Faial Island, Azores, September 5–8, 2023, Proceedings, Part I
ISBN
978-3-031-49007-1
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
13
Pages from-to
495-507
Publisher name
Springer, Cham
Place of publication
—
Event location
Faial Island
Event date
Sep 5, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001160573500039