Deep Heuristic-learning in the Rubik's Cube Domain: An Experimental Evaluation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10367133" target="_blank" >RIV/00216208:11320/17:10367133 - isvavai.cz</a>
Result on the web
<a href="http://ceur-ws.org/Vol-1885/57.pdf" target="_blank" >http://ceur-ws.org/Vol-1885/57.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Deep Heuristic-learning in the Rubik's Cube Domain: An Experimental Evaluation
Original language description
Recent successes of neural networks in solving combinatorial problems and games like Go, Poker and others inspire further attempts to use deep learning approaches in discrete domains. In the field of automated planning, the most popular approach is informed forward search driven by a~heuristic function which estimates the quality of encountered states. Designing a~powerful and easily-computable heuristics however is still a~challenging problem on many domains. In this paper, we use machine learning to construct such heuristic automatically. We train a~neural network to predict a~minimal number of moves required to solve a~given instance of Rubik's cube. We then use the trained network as a~heuristic distance estimator with a~standard forward-search algorithm and compare the results with other heuristics. Our experiments show that the learning approach is competitive with state-of-the-art and might be the best choice in some use-case scenarios.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 17th Conference on Information Technologies - Applications and Theory (ITAT 2017)
ISBN
—
ISSN
1613-0073
e-ISSN
neuvedeno
Number of pages
8
Pages from-to
57-64
Publisher name
CEUR
Place of publication
Neuveden
Event location
Martinské hole
Event date
Sep 22, 2017
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—