All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Deep Heuristic-learning in the Rubik's Cube Domain: An Experimental Evaluation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10367133" target="_blank" >RIV/00216208:11320/17:10367133 - isvavai.cz</a>

  • Result on the web

    <a href="http://ceur-ws.org/Vol-1885/57.pdf" target="_blank" >http://ceur-ws.org/Vol-1885/57.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Deep Heuristic-learning in the Rubik's Cube Domain: An Experimental Evaluation

  • Original language description

    Recent successes of neural networks in solving combinatorial problems and games like Go, Poker and others inspire further attempts to use deep learning approaches in discrete domains. In the field of automated planning, the most popular approach is informed forward search driven by a~heuristic function which estimates the quality of encountered states. Designing a~powerful and easily-computable heuristics however is still a~challenging problem on many domains. In this paper, we use machine learning to construct such heuristic automatically. We train a~neural network to predict a~minimal number of moves required to solve a~given instance of Rubik&apos;s cube. We then use the trained network as a~heuristic distance estimator with a~standard forward-search algorithm and compare the results with other heuristics. Our experiments show that the learning approach is competitive with state-of-the-art and might be the best choice in some use-case scenarios.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 17th Conference on Information Technologies - Applications and Theory (ITAT 2017)

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

    neuvedeno

  • Number of pages

    8

  • Pages from-to

    57-64

  • Publisher name

    CEUR

  • Place of publication

    Neuveden

  • Event location

    Martinské hole

  • Event date

    Sep 22, 2017

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article