On Characterization of Distributions of Symmetrically Dependent Random Variables
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10456352" target="_blank" >RIV/00216208:11320/20:10456352 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_fbN.O23_K" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_fbN.O23_K</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10958-020-04648-w" target="_blank" >10.1007/s10958-020-04648-w</a>
Alternative languages
Result language
angličtina
Original language name
On Characterization of Distributions of Symmetrically Dependent Random Variables
Original language description
Characterizations of scale mixtures of normal, stable, and some other laws are obtained in the case of symmetrically dependent random variables. Symmetrically dependent random variables are studied for a special case of scale dependence. Conditions of unique (and nonunique) representation of a sequence of random variables as that of symmetrically dependent ones are given. Some variants of the Linnik and Polya theorems are given.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GA16-03708S" target="_blank" >GA16-03708S: Spatial geometrical statistics of random sets in Euclidean spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Sciences [online]
ISSN
1573-8795
e-ISSN
—
Volume of the periodical
244
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
752-761
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85078621223