All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Characterization of Distributions of Symmetrically Dependent Random Variables

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10456352" target="_blank" >RIV/00216208:11320/20:10456352 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_fbN.O23_K" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_fbN.O23_K</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10958-020-04648-w" target="_blank" >10.1007/s10958-020-04648-w</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Characterization of Distributions of Symmetrically Dependent Random Variables

  • Original language description

    Characterizations of scale mixtures of normal, stable, and some other laws are obtained in the case of symmetrically dependent random variables. Symmetrically dependent random variables are studied for a special case of scale dependence. Conditions of unique (and nonunique) representation of a sequence of random variables as that of symmetrically dependent ones are given. Some variants of the Linnik and Polya theorems are given.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GA16-03708S" target="_blank" >GA16-03708S: Spatial geometrical statistics of random sets in Euclidean spaces</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Sciences [online]

  • ISSN

    1573-8795

  • e-ISSN

  • Volume of the periodical

    244

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    752-761

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85078621223