Estimates of Initial Scales for Layers with Small Random Negative-Definite Perturbations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F19%3A50016362" target="_blank" >RIV/62690094:18470/19:50016362 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/content/pdf/10.1007/s10958-019-04443-2.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/s10958-019-04443-2.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10958-019-04443-2" target="_blank" >10.1007/s10958-019-04443-2</a>
Alternative languages
Result language
angličtina
Original language name
Estimates of Initial Scales for Layers with Small Random Negative-Definite Perturbations
Original language description
In this work, we consider the Schrödinger operator in a multi-dimensional layer with small random perturbations. Perturbations are distributed in periodicity cells of an arbitrarily chosen periodic lattice. To each cell, we put in correspondence a random variable; these random variables are independent and have the same distributions. Perturbations are described by the same abstract symmetric operator depending on the random variable multiplied by a global small parameter. We consider the case where the perturbations shift the bottom part of the spectrum of the unperturbed operator to the left by a quantity of order of the square of the small parameter. Under these conditions, we establish the main result, which is the estimate of initial scales. We also present particular examples that demonstrate the main result.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of mathematical sciences
ISSN
1072-3374
e-ISSN
—
Volume of the periodical
241
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
31
Pages from-to
518-548
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85070786674