All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Spectral localization for quantum Hamiltonians with weak random delta interaction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F18%3A50014838" target="_blank" >RIV/62690094:18470/18:50014838 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.crma.2018.04.023" target="_blank" >http://dx.doi.org/10.1016/j.crma.2018.04.023</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.crma.2018.04.023" target="_blank" >10.1016/j.crma.2018.04.023</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Spectral localization for quantum Hamiltonians with weak random delta interaction

  • Original language description

    We consider a negative Laplacian in multi-dimensional Euclidean space (or a multi-dimensional layer) with a weak disorder random perturbation. The perturbation consists of a sum of lattice translates of a delta interaction supported on a compact manifold of co-dimension one and modulated by coupling constants, which are independent identically distributed random variables times a small disorder parameter. We establish that the spectrum of the considered operator is almost surely a fixed set, characterize its minimum, give an initial length scale estimate and the Wegner estimate, and conclude that there is a small zone of a pure point spectrum containing the almost sure spectral bottom. The length of this zone is proportional to the small disorder parameter. (C) 2018 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    COMPTES RENDUS MATHEMATIQUE

  • ISSN

    1631-073X

  • e-ISSN

  • Volume of the periodical

    356

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    6

  • Pages from-to

    686-691

  • UT code for WoS article

    000433239800016

  • EID of the result in the Scopus database