Strengths and limitations of stretching for least-squares problems with some dense rows
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10421595" target="_blank" >RIV/00216208:11320/21:10421595 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ozEYKO~UZF" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ozEYKO~UZF</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3412559" target="_blank" >10.1145/3412559</a>
Alternative languages
Result language
angličtina
Original language name
Strengths and limitations of stretching for least-squares problems with some dense rows
Original language description
We recently introduced a sparse stretching strategy for handling dense rows that can arise in large-scale linear least-squares problems and make such problems challenging to solve. Sparse stretching is designed to limit the amount of fill within the stretched normal matrix and hence within the subsequent Cholesky factorization. While preliminary results demonstrated that sparse stretching performs significantly better than standard stretching, it has a number of limitations. In this article, we discuss and illustrate these limitations and propose new strategies that are designed to overcome them. Numerical experiments on problems arising from practical applications are used to demonstrate the effectiveness of these new ideas. We consider both direct and preconditioned iterative solvers.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA18-12719S" target="_blank" >GA18-12719S: Thermodynamical and mathematical analysis of flows of complex fluids</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ACM Transactions on Mathematical Software
ISSN
0098-3500
e-ISSN
—
Volume of the periodical
47
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
25
Pages from-to
1-25
UT code for WoS article
000606818900001
EID of the result in the Scopus database
2-s2.0-85099365064