Simplicity of the automorphism groups of generalised metric spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10429951" target="_blank" >RIV/00216208:11320/21:10429951 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=PDSrp2WU7k" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=PDSrp2WU7k</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jalgebra.2021.04.035" target="_blank" >10.1016/j.jalgebra.2021.04.035</a>
Alternative languages
Result language
angličtina
Original language name
Simplicity of the automorphism groups of generalised metric spaces
Original language description
Tent and Ziegler proved that the automorphism group of the Urysohn sphere is simple and that the automorphism group of the Urysohn space is simple modulo bounded automorphisms. A key component of their proof is the definition of a stationary independence relation (SIR). In this paper we prove that the existence of a SIR satisfying some extra axioms is enough to prove simplicity of the automorphism group of a countable structure. The extra axioms are chosen with applications in mind, namely homogeneous structures which admit a "metric-like amalgamation", for example all primitive 3-constrained metrically homogeneous graphs of finite diameter from Cherlin's list. (C) 2021 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ18-13685Y" target="_blank" >GJ18-13685Y: Model thoery and extremal combinatorics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Algebra
ISSN
0021-8693
e-ISSN
—
Volume of the periodical
584
Issue of the periodical within the volume
15. 10. 2021
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
163-179
UT code for WoS article
000663941600007
EID of the result in the Scopus database
2-s2.0-85107708156