Generic norms and metrics on countable abelian groups
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00504468" target="_blank" >RIV/67985840:_____/19:00504468 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00605-019-01277-7" target="_blank" >http://dx.doi.org/10.1007/s00605-019-01277-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00605-019-01277-7" target="_blank" >10.1007/s00605-019-01277-7</a>
Alternative languages
Result language
angličtina
Original language name
Generic norms and metrics on countable abelian groups
Original language description
For a countable abelian group G we investigate generic properties of the space of all invariant metrics on G. We prove that for every such an unbounded group G, i.e. group which has elements of arbitrarily high order, there is a dense set of invariant metrics on G which make G isometric to the rational Urysohn space, and a comeager set of invariant metrics such that the completion is isometric to the Urysohn space. This generalizes results of Cameron and Vershik, Niemiec, and the author. Then we prove that for every countable abelian G such that G≅ ⨁ N G there is a comeager set of invariant metrics on G such that all of them give rise to the same metric group after completion. If moreover G is unbounded, then using a result of Melleray and Tsankov we get that the completion is extremely amenable.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF16-34860L" target="_blank" >GF16-34860L: Logic and Topology in Banach spaces</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Monatshefte für Mathematik
ISSN
0026-9255
e-ISSN
—
Volume of the periodical
189
Issue of the periodical within the volume
1
Country of publishing house
AT - AUSTRIA
Number of pages
24
Pages from-to
51-74
UT code for WoS article
000467494400003
EID of the result in the Scopus database
2-s2.0-85062639832