Metric topological groups: their metric approximation and metric ultraproducts
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00490729" target="_blank" >RIV/67985840:_____/18:00490729 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4171/GGD/450" target="_blank" >http://dx.doi.org/10.4171/GGD/450</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/GGD/450" target="_blank" >10.4171/GGD/450</a>
Alternative languages
Result language
angličtina
Original language name
Metric topological groups: their metric approximation and metric ultraproducts
Original language description
We define a metric ultraproduct of topological groups with left-invariant metric, and show that there is a countable sequence of finite groups with left-invariant metric whose metric ultraproduct contains isometrically as a subgroup every separable topological group with left-invariant metric. In particular, there is a countable sequence of finite groups with left-invariant metric such that every finite subset of an arbitrary topological group with left-invariant metric may be approximated by all but finitely many of them. We compare our results with related concepts such as sofic groups, hyperlinear groups and weakly sofic groups.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Groups Geometry and Dynamics
ISSN
1661-7207
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
22
Pages from-to
615-636
UT code for WoS article
000434484200005
EID of the result in the Scopus database
2-s2.0-85049040513