Embedding into monothetic groups
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00490879" target="_blank" >RIV/67985840:_____/18:00490879 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1515/jgth-2017-0048" target="_blank" >http://dx.doi.org/10.1515/jgth-2017-0048</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/jgth-2017-0048" target="_blank" >10.1515/jgth-2017-0048</a>
Alternative languages
Result language
angličtina
Original language name
Embedding into monothetic groups
Original language description
We provide a very short elementary proof that every separable abelian group with a bounded invariant metric isometrically embeds into a monothetic group with a bounded invariant metric, in such a way that the result of Morris and Pestov that every separable abelian topological group embeds into a monothetic group is an immediate corollary. We show that the boundedness assumption cannot be dropped.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF16-34860L" target="_blank" >GF16-34860L: Logic and Topology in Banach spaces</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Group Theory
ISSN
1433-5883
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
3
Pages from-to
579-581
UT code for WoS article
000437761100003
EID of the result in the Scopus database
2-s2.0-85041606828