Metrically universal abelian groups
Result description
We give a positive answer to the question of Shkarin (Mat. Sb. 190 (1999), no. 7, 127-144) whether there exists a metrically universal abelian separable group equipped with invariant metric. Our construction also gives an example of a group structure on the Urysohn universal space that is substantially different from the previously known examples. Under some cardinal arithmetic assumptions, our results generalize to higher cardinalities.
Keywords
The result's identifiers
Result code in IS VaVaI
Result on the web
DOI - Digital Object Identifier
Alternative languages
Result language
angličtina
Original language name
Metrically universal abelian groups
Original language description
We give a positive answer to the question of Shkarin (Mat. Sb. 190 (1999), no. 7, 127-144) whether there exists a metrically universal abelian separable group equipped with invariant metric. Our construction also gives an example of a group structure on the Urysohn universal space that is substantially different from the previously known examples. Under some cardinal arithmetic assumptions, our results generalize to higher cardinalities.
Czech name
—
Czech description
—
Classification
Type
Jimp - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
IAA100190902: Mathematical logic, complexity, and algorithms
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
American Mathematical Society. Transactions
ISSN
0002-9947
e-ISSN
—
Volume of the periodical
369
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
5981-5998
UT code for WoS article
000400760300025
EID of the result in the Scopus database
2-s2.0-85019048089
Basic information
Result type
Jimp - Article in a specialist periodical, which is included in the Web of Science database
OECD FORD
Pure mathematics
Year of implementation
2017