All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

CONANT'S GENERALISED METRIC SPACES ARE RAMSEY

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10429953" target="_blank" >RIV/00216208:11320/21:10429953 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DrWhRa5-PS" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DrWhRa5-PS</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    CONANT'S GENERALISED METRIC SPACES ARE RAMSEY

  • Original language description

    We give Ramsey expansions of classes of generalised metric spaces where distances come from a linearly ordered commutative monoid. This complements results of Conant about the extension property for partial automorphisms and extends an earlier result of the first and the last author giving the Ramsey property of convexly ordered S-metric spaces. Unlike Conant&apos;s approach, our analysis does not require the monoid to be semiarchimedean.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ18-13685Y" target="_blank" >GJ18-13685Y: Model thoery and extremal combinatorics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Contributions to Discrete Mathematics [online]

  • ISSN

    1715-0868

  • e-ISSN

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CA - CANADA

  • Number of pages

    25

  • Pages from-to

    46-70

  • UT code for WoS article

    000675214700004

  • EID of the result in the Scopus database