All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Free monoids and generalized metric spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00113483" target="_blank" >RIV/00216224:14310/19:00113483 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0195669818300210" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0195669818300210</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ejc.2018.02.008" target="_blank" >10.1016/j.ejc.2018.02.008</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Free monoids and generalized metric spaces

  • Original language description

    Let A be an ordered alphabet, A* be the free monoid over A ordered by the Higman ordering, and let F(A*) be the set of final segments of A*. With the operation of concatenation, this set is a monoid. We show that the submonoid F degrees(A*) := F(A*) {empty set} is free. The MacNeille completion N(A*) of A* is a submonoid of F(A*). As a corollary, we obtain that the monoid N degrees(A*) := N(A*) {empty set} is free. We give an interpretation of the freeness of F degrees(A*) in the category of metric spaces over the Heyting algebra V := F(A*), with the non-expansive mappings as morphisms. Each final segment F of A* yields the injective envelope S-F of a two-element metric space over V. The uniqueness of the decomposition of F is due to the uniqueness of the block decomposition of the graph G(F) associated to this injective envelope. (C) 2018 Elsevier Ltd. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Journal of Combinatorics

  • ISSN

    0195-6698

  • e-ISSN

  • Volume of the periodical

    80

  • Issue of the periodical within the volume

    AUG 2019

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    22

  • Pages from-to

    339-360

  • UT code for WoS article

    000474675900033

  • EID of the result in the Scopus database

    2-s2.0-85042635782