A presentation of a finitely generated submonoid of invertible endomorphisms of the free monoid
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10331378" target="_blank" >RIV/00216208:11320/16:10331378 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00233-015-9737-x" target="_blank" >http://dx.doi.org/10.1007/s00233-015-9737-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00233-015-9737-x" target="_blank" >10.1007/s00233-015-9737-x</a>
Alternative languages
Result language
angličtina
Original language name
A presentation of a finitely generated submonoid of invertible endomorphisms of the free monoid
Original language description
An endomorphism of the free monoid is invertible if it is injective and extends to an automorphism of the free group generated by . A simple example: the endomorphism that leaves all generators invariant except one, say a, which is mapped to ba for some other generator b. We give a monoid presentation for the submonoid generated by all such endomorphisms when a and b are taken arbitrarily. These left translations are a special case of Nielsen positive transformations: "left" because the mutiplicative constant acts on the left and "positive" because this constant belongs to the free monoid, not the free group.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Semigroup Forum
ISSN
0037-1912
e-ISSN
—
Volume of the periodical
93
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
15
Pages from-to
444-458
UT code for WoS article
000388706300002
EID of the result in the Scopus database
2-s2.0-84937604291