Two examples of Wilf-collapse
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10431877" target="_blank" >RIV/00216208:11320/21:10431877 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1Z7VQKRYP5" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1Z7VQKRYP5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.46298/dmtcs.5986" target="_blank" >10.46298/dmtcs.5986</a>
Alternative languages
Result language
angličtina
Original language name
Two examples of Wilf-collapse
Original language description
Two permutation classes, the X-class and subpermutations of the increasing oscillation are shown to exhibit an exponential Wilf-collapse. This means that the number of distinct enumerations of principal subclasses of each of these classes grows much more slowly than the class itself whereas a priori, based only on symmetries of the class, there is no reason to expect this. The underlying cause of the collapse in both cases is the ability to apply some form of local symmetry which, combined with a greedy algorithm for detecting patterns in these classes, yields a Wilf-collapse.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics and Theoretical Computer Science
ISSN
1462-7264
e-ISSN
1365-8050
Volume of the periodical
22
Issue of the periodical within the volume
2, Permutation Patterns 2019
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
9
UT code for WoS article
001073436700005
EID of the result in the Scopus database
2-s2.0-85116072486