All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bears with Hats and Independence Polynomials

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10431910" target="_blank" >RIV/00216208:11320/21:10431910 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21240/21:00355330

  • Result on the web

    <a href="https://arxiv.org/abs/2103.07401" target="_blank" >https://arxiv.org/abs/2103.07401</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-86838-3" target="_blank" >10.1007/978-3-030-86838-3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bears with Hats and Independence Polynomials

  • Original language description

    Consider the following hat guessing game. A bear sits on each vertex of a graph G, and a demon puts on each bear a hat colored by one of h colors. Each bear sees only the hat colors of his neighbors. Based on this information only, each bear has to guess g colors and he guesses correctly if his hat color is included in his guesses. The bears win if at least one bear guesses correctly for any hat arrangement. We introduce a new parameter - fractional hat chromatic number μ^, arising from the hat guessing game. The parameter μ^ is related to the hat chromatic number which has been studied before. We present a surprising connection between the hat guessing game and the independence polynomial of graphs. This connection allows us to compute the fractional hat chromatic number of chordal graphs in polynomial time, to bound fractional hat chromatic number by a function of maximum degree of G, and to compute the exact value of μ^ of cliques, paths, and cycles.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Graph-Theoretic Concepts in Computer Science

  • ISBN

    978-3-030-86837-6

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    283-295

  • Publisher name

    Springer, Cham

  • Place of publication

    Neuveden

  • Event location

    Varšava, Polsko

  • Event date

    Jun 23, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article