All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bears with Hats and Independence Polynomials

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00372252" target="_blank" >RIV/68407700:21240/23:00372252 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.46298/DMTCS.10802" target="_blank" >https://doi.org/10.46298/DMTCS.10802</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.46298/DMTCS.10802" target="_blank" >10.46298/DMTCS.10802</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bears with Hats and Independence Polynomials

  • Original language description

    Consider the following hat guessing game. A bear sits on each vertex of a graph G, and a demon puts on each bear a hat colored by one of h colors. Each bear sees only the hat colors of his neighbors. Based on this information only, each bear has to guess g colors and he guesses correctly if his hat color is included in his guesses. The bears win if at least one bear guesses correctly for any hat arrangement. We introduce a new parameter - fractional hat chromatic number μ^, arising from the hat guessing game. The parameter μ^ is related to the hat chromatic number which has been studied before. We present a surprising connection between the hat guessing game and the independence polynomial of graphs. This connection allows us to compute the fractional hat chromatic number of chordal graphs in polynomial time, to bound fractional hat chromatic number by a function of maximum degree of G, and to compute the exact value of μ^ of cliques, paths, and cycles.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete Mathematics and Theoretical Computer Science

  • ISSN

    1462-7264

  • e-ISSN

    1365-8050

  • Volume of the periodical

    25

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    21

  • Pages from-to

  • UT code for WoS article

    001151132000004

  • EID of the result in the Scopus database

    2-s2.0-85177566832