All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Similarity vs. Relevance: From Simple Searches to Complex Discovery

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10433259" target="_blank" >RIV/00216208:11320/21:10433259 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21240/21:00351284

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-89657-7_9" target="_blank" >http://dx.doi.org/10.1007/978-3-030-89657-7_9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-89657-7_9" target="_blank" >10.1007/978-3-030-89657-7_9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Similarity vs. Relevance: From Simple Searches to Complex Discovery

  • Original language description

    Similarity queries play the crucial role in content-based retrieval. The similarity function itself is regarded as the function of relevance between a query object and objects from database; the most similar objects are understood as the most relevant. However, such an automatic adoption of similarity as relevance leads to limited applicability of similarity search in domains like entity discovery, where relevant objects are not supposed to be similar in the traditional meaning. In this paper, we propose the meta-model of data-transitive similarity operating on top of a particular similarity model and a database. This meta-model enables to treat directly non-similar objects x , y as similar if there exists a chain of objects x , i1 , ..., in , y having the neighboring members similar enough. Hence, this approach places the similarity in the role of relevance, where objects do not need to be directly similar but still remain relevant to each other (transitively similar). The data-transitive similarity concept allows to use standard similarity-search methods (queries, joins, rankings, analytics) in more complex tasks, like the entity discovery, where relevant results are often complementary or orthogonal to the query, rather than directly similar. Moreover, we show the data-transitive similarity is inherently self-explainable and non-metric. We discuss the approach in the domain of open dataset discovery.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA19-01641S" target="_blank" >GA19-01641S: Contextual Similarity Search in Open Data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    14th International Conference, SISAP 2021, Dortmund, Germany, September 29 – October 1, 2021, Proceedings

  • ISBN

    978-3-030-89656-0

  • ISSN

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    104-117

  • Publisher name

    Springer

  • Place of publication

    Cham, Germany

  • Event location

    virtual

  • Event date

    Sep 29, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article