Similarity vs. Relevance: From Simple Searches to Complex Discovery
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10433259" target="_blank" >RIV/00216208:11320/21:10433259 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21240/21:00351284
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-89657-7_9" target="_blank" >http://dx.doi.org/10.1007/978-3-030-89657-7_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-89657-7_9" target="_blank" >10.1007/978-3-030-89657-7_9</a>
Alternative languages
Result language
angličtina
Original language name
Similarity vs. Relevance: From Simple Searches to Complex Discovery
Original language description
Similarity queries play the crucial role in content-based retrieval. The similarity function itself is regarded as the function of relevance between a query object and objects from database; the most similar objects are understood as the most relevant. However, such an automatic adoption of similarity as relevance leads to limited applicability of similarity search in domains like entity discovery, where relevant objects are not supposed to be similar in the traditional meaning. In this paper, we propose the meta-model of data-transitive similarity operating on top of a particular similarity model and a database. This meta-model enables to treat directly non-similar objects x , y as similar if there exists a chain of objects x , i1 , ..., in , y having the neighboring members similar enough. Hence, this approach places the similarity in the role of relevance, where objects do not need to be directly similar but still remain relevant to each other (transitively similar). The data-transitive similarity concept allows to use standard similarity-search methods (queries, joins, rankings, analytics) in more complex tasks, like the entity discovery, where relevant results are often complementary or orthogonal to the query, rather than directly similar. Moreover, we show the data-transitive similarity is inherently self-explainable and non-metric. We discuss the approach in the domain of open dataset discovery.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-01641S" target="_blank" >GA19-01641S: Contextual Similarity Search in Open Data</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
14th International Conference, SISAP 2021, Dortmund, Germany, September 29 – October 1, 2021, Proceedings
ISBN
978-3-030-89656-0
ISSN
—
e-ISSN
—
Number of pages
14
Pages from-to
104-117
Publisher name
Springer
Place of publication
Cham, Germany
Event location
virtual
Event date
Sep 29, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—