All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A new algebraically stabilized method for convection-diffusion-reaction equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10435695" target="_blank" >RIV/00216208:11320/21:10435695 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-55874-1_59" target="_blank" >https://doi.org/10.1007/978-3-030-55874-1_59</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-55874-1_59" target="_blank" >10.1007/978-3-030-55874-1_59</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A new algebraically stabilized method for convection-diffusion-reaction equations

  • Original language description

    This paper is devoted to algebraically stabilized finite element methods for the numerical solution of convection-diffusion-reaction equations. First, the algebraic flux correction scheme with the popular Kuzmin limiter is presented. This limiter has several favourable properties but does not guarantee the validity of the discrete maximum principle for non-Delaunay meshes. Therefore, a generalization of the algebraic flux correction scheme and a modification of the limiter are proposed which lead to the discrete maximum principle for arbitrary meshes. Numerical results demonstrate the advantages of the new method.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Numerical Mathematics and Advanced Applications ENUMATH 2019

  • ISBN

    978-3-030-55873-4

  • ISSN

    1439-7358

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    605-613

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Egmond aan Zee

  • Event date

    Sep 30, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article