A new algebraically stabilized method for convection-diffusion-reaction equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10435695" target="_blank" >RIV/00216208:11320/21:10435695 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-030-55874-1_59" target="_blank" >https://doi.org/10.1007/978-3-030-55874-1_59</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-55874-1_59" target="_blank" >10.1007/978-3-030-55874-1_59</a>
Alternative languages
Result language
angličtina
Original language name
A new algebraically stabilized method for convection-diffusion-reaction equations
Original language description
This paper is devoted to algebraically stabilized finite element methods for the numerical solution of convection-diffusion-reaction equations. First, the algebraic flux correction scheme with the popular Kuzmin limiter is presented. This limiter has several favourable properties but does not guarantee the validity of the discrete maximum principle for non-Delaunay meshes. Therefore, a generalization of the algebraic flux correction scheme and a modification of the limiter are proposed which lead to the discrete maximum principle for arbitrary meshes. Numerical results demonstrate the advantages of the new method.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Numerical Mathematics and Advanced Applications ENUMATH 2019
ISBN
978-3-030-55873-4
ISSN
1439-7358
e-ISSN
—
Number of pages
9
Pages from-to
605-613
Publisher name
Springer
Place of publication
Cham
Event location
Egmond aan Zee
Event date
Sep 30, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—