On nonlinear problems of parabolic type with implicit constitutive equations involving flux
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10435827" target="_blank" >RIV/00216208:11320/21:10435827 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5Y5i8zX3mX" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5Y5i8zX3mX</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218202521500457" target="_blank" >10.1142/S0218202521500457</a>
Alternative languages
Result language
angličtina
Original language name
On nonlinear problems of parabolic type with implicit constitutive equations involving flux
Original language description
We study systems of nonlinear partial differential equations of parabolic type, in which the elliptic operator is replaced by the first-order divergence operator acting on a flux function, which is related to the spatial gradient of the unknown through an additional implicit equation. This setting, broad enough in terms of applications, significantly expands the paradigm of nonlinear parabolic problems. Formulating four conditions concerning the form of the implicit equation, we first show that these conditions describe a maximal monotone p-coercive graph. We then establish the global-in-time and large-data existence of a (weak) solution and its uniqueness. To this end, we adopt and significantly generalize Minty's method of monotone mappings. A unified theory, containing several novel tools, is developed in a way to be tractable from the point of view of numerical approximations.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-12719S" target="_blank" >GA18-12719S: Thermodynamical and mathematical analysis of flows of complex fluids</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Models and Methods in Applied Sciences
ISSN
0218-2025
e-ISSN
—
Volume of the periodical
31
Issue of the periodical within the volume
10
Country of publishing house
SG - SINGAPORE
Number of pages
52
Pages from-to
2039-2090
UT code for WoS article
000722222900004
EID of the result in the Scopus database
2-s2.0-85113932175