Parabolic logistic equation with harvesting involving the fractional Laplacian
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43972876" target="_blank" >RIV/49777513:23520/24:43972876 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00030-024-00992-x" target="_blank" >https://doi.org/10.1007/s00030-024-00992-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00030-024-00992-x" target="_blank" >10.1007/s00030-024-00992-x</a>
Alternative languages
Result language
angličtina
Original language name
Parabolic logistic equation with harvesting involving the fractional Laplacian
Original language description
This paper deals with a class of parabolic reaction-diffusion equations driven by the fractional Laplacian as the diffusion operator over a bounded domain with zero Dirichlet external condition. Using a comparison principle and monotone iteration method, we establish existence and uniqueness results. We apply the existence result to the logistic growth problems with constant yield harvesting by constructing an ordered pair of positive sub- and supersolution of the corresponding elliptic problem.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA22-18261S" target="_blank" >GA22-18261S: Nonlinear problems with non-standard diffusion</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS
ISSN
1021-9722
e-ISSN
1420-9004
Volume of the periodical
31
Issue of the periodical within the volume
6
Country of publishing house
CH - SWITZERLAND
Number of pages
25
Pages from-to
—
UT code for WoS article
001329906400001
EID of the result in the Scopus database
2-s2.0-85206377808