All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Reaction-diffusion equations on graphs: stationary states and Lyapunov functions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438138" target="_blank" >RIV/00216208:11320/21:10438138 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ms_FHHKm5X" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ms_FHHKm5X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6544/abd52c" target="_blank" >10.1088/1361-6544/abd52c</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Reaction-diffusion equations on graphs: stationary states and Lyapunov functions

  • Original language description

    Reaction-diffusion equations on graphs (networks) serve as mathematical models of various phenomena in physics and biology. We study the existence of spatially heterogeneous stationary states, provided that the diffusion coefficients are sufficiently small. We provide an easily applicable criterion for determining which of them are nonnegative. Next, we consider the problem of constructing Lyapunov functions for reaction-diffusion equations on graphs, provided that a Lyapunov function for the corresponding non-diffusive system is known. We provide an easy-to-use result applicable in situations where the non-diffusive Lyapunov function is a sum of univariate functions with nondecreasing derivatives. The results are illustrated by means of several examples from mathematical biology.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nonlinearity

  • ISSN

    0951-7715

  • e-ISSN

  • Volume of the periodical

    34

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    26

  • Pages from-to

    1854-1879

  • UT code for WoS article

    000672951100001

  • EID of the result in the Scopus database

    2-s2.0-85105111578