Reaction-diffusion equations on graphs: stationary states and Lyapunov functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438138" target="_blank" >RIV/00216208:11320/21:10438138 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ms_FHHKm5X" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ms_FHHKm5X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6544/abd52c" target="_blank" >10.1088/1361-6544/abd52c</a>
Alternative languages
Result language
angličtina
Original language name
Reaction-diffusion equations on graphs: stationary states and Lyapunov functions
Original language description
Reaction-diffusion equations on graphs (networks) serve as mathematical models of various phenomena in physics and biology. We study the existence of spatially heterogeneous stationary states, provided that the diffusion coefficients are sufficiently small. We provide an easily applicable criterion for determining which of them are nonnegative. Next, we consider the problem of constructing Lyapunov functions for reaction-diffusion equations on graphs, provided that a Lyapunov function for the corresponding non-diffusive system is known. We provide an easy-to-use result applicable in situations where the non-diffusive Lyapunov function is a sum of univariate functions with nondecreasing derivatives. The results are illustrated by means of several examples from mathematical biology.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinearity
ISSN
0951-7715
e-ISSN
—
Volume of the periodical
34
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
26
Pages from-to
1854-1879
UT code for WoS article
000672951100001
EID of the result in the Scopus database
2-s2.0-85105111578