QUILLEN EQUIVALENT MODELS FOR THE DERIVED CATEGORY OF FLATS AND THE RESOLUTION PROPERTY
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436278" target="_blank" >RIV/00216208:11320/21:10436278 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2B0M9IKoeI" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2B0M9IKoeI</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S1446788720000075" target="_blank" >10.1017/S1446788720000075</a>
Alternative languages
Result language
angličtina
Original language name
QUILLEN EQUIVALENT MODELS FOR THE DERIVED CATEGORY OF FLATS AND THE RESOLUTION PROPERTY
Original language description
We investigate the assumptions under which a subclass of flat quasicoherent sheaves on a quasicompact and semiseparated scheme allows us to 'mock' the homotopy category of projective modules. Our methods are based on module-theoretic properties of the subclass of flat modules involved as well as their behaviour with respect to Zariski localizations. As a consequence we get that, for such schemes, the derived category of flat quasicoherent sheaves is equivalent to the derived category of very flat quasicoherent sheaves. If, in addition, the scheme satisfies the resolution property then both derived categories are equivalent to the derived category of infinite-dimensional vector bundles. The equivalences are inferred from a Quillen equivalence between the corresponding models.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of the Australian Mathematical Society
ISSN
1446-7887
e-ISSN
—
Volume of the periodical
2021
Issue of the periodical within the volume
3
Country of publishing house
AU - AUSTRALIA
Number of pages
19
Pages from-to
302-320
UT code for WoS article
000650322000002
EID of the result in the Scopus database
2-s2.0-85082536302