All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

QUILLEN EQUIVALENT MODELS FOR THE DERIVED CATEGORY OF FLATS AND THE RESOLUTION PROPERTY

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436278" target="_blank" >RIV/00216208:11320/21:10436278 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2B0M9IKoeI" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2B0M9IKoeI</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S1446788720000075" target="_blank" >10.1017/S1446788720000075</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    QUILLEN EQUIVALENT MODELS FOR THE DERIVED CATEGORY OF FLATS AND THE RESOLUTION PROPERTY

  • Original language description

    We investigate the assumptions under which a subclass of flat quasicoherent sheaves on a quasicompact and semiseparated scheme allows us to &apos;mock&apos; the homotopy category of projective modules. Our methods are based on module-theoretic properties of the subclass of flat modules involved as well as their behaviour with respect to Zariski localizations. As a consequence we get that, for such schemes, the derived category of flat quasicoherent sheaves is equivalent to the derived category of very flat quasicoherent sheaves. If, in addition, the scheme satisfies the resolution property then both derived categories are equivalent to the derived category of infinite-dimensional vector bundles. The equivalences are inferred from a Quillen equivalence between the corresponding models.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of the Australian Mathematical Society

  • ISSN

    1446-7887

  • e-ISSN

  • Volume of the periodical

    2021

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    AU - AUSTRALIA

  • Number of pages

    19

  • Pages from-to

    302-320

  • UT code for WoS article

    000650322000002

  • EID of the result in the Scopus database

    2-s2.0-85082536302