All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Pure semisimplicity conjecture and Artin problem for dimension sequences

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436286" target="_blank" >RIV/00216208:11320/21:10436286 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=etEL.o3Yif" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=etEL.o3Yif</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jpaa.2021.106745" target="_blank" >10.1016/j.jpaa.2021.106745</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Pure semisimplicity conjecture and Artin problem for dimension sequences

  • Original language description

    Inspired by a recent paper due to Jose Luis Garcia, we revisit the attempt of Daniel Simson to construct a counterexample to the pure semisimplicity conjecture. Using compactness, we show that the existence of such counterexample would readily follow from the very existence of certain (countable set of) hereditary artinian rings of finite representation type. The existence of such rings is then proved to be equivalent to the existence of special types of embeddings, which we call tight, of division rings into simple artinian rings. Using the tools by Aidan Schofield from 1980s, we can show that such an embedding F -&gt; M-n (G) exists provided that n &lt; 5. As a byproduct, we obtain a division ring extension G subset of F such that the bimodule F-G(F) has the right dimension sequence (1,2,2,2,1,4). Finally, we formulate Conjecture A, which asserts that a particular type of adjunction of an element to a division ring can be made, and demonstrate that its validity would be sufficient to prove the existence of tight embeddings in general, and hence to disprove the pure semisimplicity conjecture. (C) 2021 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-23112S" target="_blank" >GA17-23112S: Structure theory for representations of algebras (localization and tilting theory)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Pure and Applied Algebra

  • ISSN

    0022-4049

  • e-ISSN

  • Volume of the periodical

    225

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

    106745

  • UT code for WoS article

    000664028800009

  • EID of the result in the Scopus database

    2-s2.0-85102556784