Pure semisimplicity conjecture and Artin problem for dimension sequences
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436286" target="_blank" >RIV/00216208:11320/21:10436286 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=etEL.o3Yif" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=etEL.o3Yif</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jpaa.2021.106745" target="_blank" >10.1016/j.jpaa.2021.106745</a>
Alternative languages
Result language
angličtina
Original language name
Pure semisimplicity conjecture and Artin problem for dimension sequences
Original language description
Inspired by a recent paper due to Jose Luis Garcia, we revisit the attempt of Daniel Simson to construct a counterexample to the pure semisimplicity conjecture. Using compactness, we show that the existence of such counterexample would readily follow from the very existence of certain (countable set of) hereditary artinian rings of finite representation type. The existence of such rings is then proved to be equivalent to the existence of special types of embeddings, which we call tight, of division rings into simple artinian rings. Using the tools by Aidan Schofield from 1980s, we can show that such an embedding F -> M-n (G) exists provided that n < 5. As a byproduct, we obtain a division ring extension G subset of F such that the bimodule F-G(F) has the right dimension sequence (1,2,2,2,1,4). Finally, we formulate Conjecture A, which asserts that a particular type of adjunction of an element to a division ring can be made, and demonstrate that its validity would be sufficient to prove the existence of tight embeddings in general, and hence to disprove the pure semisimplicity conjecture. (C) 2021 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-23112S" target="_blank" >GA17-23112S: Structure theory for representations of algebras (localization and tilting theory)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Pure and Applied Algebra
ISSN
0022-4049
e-ISSN
—
Volume of the periodical
225
Issue of the periodical within the volume
11
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
106745
UT code for WoS article
000664028800009
EID of the result in the Scopus database
2-s2.0-85102556784