All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Covering classes and uniserial modules

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436493" target="_blank" >RIV/00216208:11320/21:10436493 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=V~dLXZXjJK" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=V~dLXZXjJK</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jalgebra.2020.11.011" target="_blank" >10.1016/j.jalgebra.2020.11.011</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Covering classes and uniserial modules

  • Original language description

    We apply minimal weakly generating sets to study the existence of Add(U-R)-covers for a uniserial module U-R. If U-R is a uniserial right module over a ring R, then S := End(U-R) has at most two maximal (right, left, two-sided) ideals: one is the set I of all endomorphisms that are not injective, and the other is the set K of all endomorphisms of U-R that are not surjective. We prove that if U-R is either finitely generated, or artinian, or I subset of K, then the class Add(U-R) is covering if and only if it is closed under direct limit. Moreover, we study endomorphism rings of artinian uniserial modules giving several examples. (C) 2020 Elsevier Inc. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-23112S" target="_blank" >GA17-23112S: Structure theory for representations of algebras (localization and tilting theory)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Algebra

  • ISSN

    0021-8693

  • e-ISSN

  • Volume of the periodical

    2021

  • Issue of the periodical within the volume

    570

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    23

  • Pages from-to

    1-23

  • UT code for WoS article

    000600064900001

  • EID of the result in the Scopus database

    2-s2.0-85097223341