On Subspaces of Kloosterman Zeros and Permutation of the Form
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436799" target="_blank" >RIV/00216208:11320/21:10436799 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/content/pdf/10.1007%2F978-3-030-68869-1.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2F978-3-030-68869-1.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On Subspaces of Kloosterman Zeros and Permutation of the Form
Original language description
ermutations of the form F(x) = L1(x-1) + L2(x) with linear functions L1, L2 are closely related to several interesting questions regarding CCZ-equivalence and EA-equivalence of the inverse function. In this paper, we show that F cannot be a permutation on binary fields if the kernel of L1 or L2 is large. A key step of our proof is an observation on the maximal size of a subspace V of F2n that consists of Kloosterman zeros, i.e. a subspace V such that Kn(v) = 0 for every v ELEMENT OF V where Kn(v) denotes the Kloosterman sum of v.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science
ISBN
978-3-030-68868-4
ISSN
0302-9743
e-ISSN
—
Number of pages
15
Pages from-to
207-221
Publisher name
Springer
Place of publication
Switzerland
Event location
Francie
Event date
Jul 6, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—