All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optimization of Quadratic Forms and t-norm Forms on Interval Domain and Computational Complexity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437061" target="_blank" >RIV/00216208:11320/21:10437061 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-47124-8_9" target="_blank" >https://doi.org/10.1007/978-3-030-47124-8_9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-47124-8_9" target="_blank" >10.1007/978-3-030-47124-8_9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optimization of Quadratic Forms and t-norm Forms on Interval Domain and Computational Complexity

  • Original language description

    We consider the problem of maximization of a quadratic form over a box. We identify the NP-hardness boundary for sparse quadratic forms: the problem is polynomially solvable for nonzero entries, but it is NP-hard if the number of nonzero entries is of the order for an arbitrarily small. Then we inspect further polynomially solvable cases. We define a sunflower graph over the quadratic form and study efficiently solvable cases according to the shape of this graph (e.g. the case with small sunflower leaves or the case with a restricted number of negative entries). Finally, we define a generalized quadratic form, called t-norm form, where the quadratic terms are replaced by t-norms. We prove that the optimization problem remains NP-hard with an arbitrary Lipschitz continuous t-norm. (C) 2021, Springer Nature Switzerland AG.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    50201 - Economic Theory

Result continuities

  • Project

    <a href="/en/project/GA18-04735S" target="_blank" >GA18-04735S: Novel approaches for relaxation and approximation techniques in deterministic global optimization</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Studies in Fuzziness and Soft Computing

  • ISBN

    978-3-030-47124-8

  • Number of pages of the result

    8

  • Pages from-to

    101-108

  • Number of pages of the book

    576

  • Publisher name

    Springer

  • Place of publication

    Cham

  • UT code for WoS chapter