Approximation Schemes for Bounded Distance Problems on Fractionally Treewidth-Fragile Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437064" target="_blank" >RIV/00216208:11320/21:10437064 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.4230/LIPIcs.ESA.2021.40" target="_blank" >https://doi.org/10.4230/LIPIcs.ESA.2021.40</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ESA.2021.40" target="_blank" >10.4230/LIPIcs.ESA.2021.40</a>
Alternative languages
Result language
angličtina
Original language name
Approximation Schemes for Bounded Distance Problems on Fractionally Treewidth-Fragile Graphs
Original language description
We give polynomial-time approximation schemes for monotone maximization problems expressible in terms of distances (up to a fixed upper bound) and efficiently solvable on graphs of bounded treewidth. These schemes apply in all fractionally treewidth-fragile graph classes, a property which is true for many natural graph classes with sublinear separators. We also provide quasipolynomial-time approximation schemes for these problems in all classes with sublinear separators.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LL2005" target="_blank" >LL2005: Algorithms and Complexity within and beyond Bounded Expansion</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
29th Annual European Symposium on Algorithms (ESA 2021)
ISBN
978-3-95977-204-4
ISSN
1868-8969
e-ISSN
—
Number of pages
10
Pages from-to
1-10
Publisher name
Schloss Dagstuhl -- Leibniz-Zentrum für Informatik
Place of publication
Dagstuhl, Germany
Event location
on-line
Event date
Sep 6, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—