Approximation Metatheorems for Classes with Bounded Expansion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10448439" target="_blank" >RIV/00216208:11320/22:10448439 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.4230/LIPIcs.SWAT.2022.22" target="_blank" >https://doi.org/10.4230/LIPIcs.SWAT.2022.22</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.SWAT.2022.22" target="_blank" >10.4230/LIPIcs.SWAT.2022.22</a>
Alternative languages
Result language
angličtina
Original language name
Approximation Metatheorems for Classes with Bounded Expansion
Original language description
We give a number of approximation metatheorems for monotone maximization problems expressible in the first-order logic, in substantially more general settings than previously known. We obtain a constant-factor approximation algorithm in any class of graphs with bounded expansion, a QPTAS in any class with strongly sublinear separators, and a PTAS in any fractionally treewidth-fragile class (which includes all common classes with strongly sublinear separators). Moreover, our tools also give an exact subexponential-time algorithm in any class with strongly sublinear separators.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LL2005" target="_blank" >LL2005: Algorithms and Complexity within and beyond Bounded Expansion</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Leibniz International Proceedings in Informatics, LIPIcs
ISBN
978-3-95977-236-5
ISSN
—
e-ISSN
—
Number of pages
17
Pages from-to
1-17
Publisher name
Schloss Dagstuhl -- Leibniz-Zentrum für Informatik
Place of publication
Dagstuhl, Germany
Event location
Tórshavn
Event date
Jul 27, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—