Parameterized Algorithms for MILPs with Small Treedepth
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437108" target="_blank" >RIV/00216208:11320/21:10437108 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Parameterized Algorithms for MILPs with Small Treedepth
Original language description
Solving (mixed) integer (linear) programs, (M)I(L)Ps for short, is a fundamental optimisation task with a wide range of applications in artificial intelligence and computer science in general. While hard in general, recent years have brought about vast progress for solving structurally restricted, (nonmixed) ILPs: n-fold, tree-fold, 2-stage stochastic and multistage stochastic programs admit efficient algorithms, and all of these special cases are subsumed by the class of ILPs of small treedepth. In this paper, we extend this line of work to the mixed case, by showing an algorithm solving MILP in time f (a, d) poly(n), where a is the largest coefficient of the constraint matrix, d is its treedepth, and n is the number of variables. This is enabled by proving bounds on the denominators (fractionality) of the vertices of bounded-treedepth (non-integer) linear programs. We do so by carefully analysing the inverses of invertible sub-matrices of the constraint matrix. This allows us to afford scaling up the mixed program to the integer grid, and applying the known methods for integer programs. We then trace the limiting boundary of our "bounded fractionality" approach both in terms of going beyond MILP (by allowing non-linear objectives) as well as its usefulness for generalising other important known tractable classes of ILP. On the positive side, we show that our result can be generalised from MILP to MIP with piece-wise linear separable convex objectives with integer breakpoints. On the negative side, we show that going even slightly beyond such objectives or considering other natural related tractable classes of ILP leads to unbounded fractionality. Finally, we show that restricting the structure of only the integral variables in the constraint matrix does not yield tractable special cases.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE
ISBN
978-1-57735-866-4
ISSN
2159-5399
e-ISSN
2374-3468
Number of pages
9
Pages from-to
12249-12257
Publisher name
ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE
Place of publication
PALO ALTO
Event location
Virtuální
Event date
Feb 2, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000681269803105