All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Parameterized Algorithms for MILPs with Small Treedepth

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437108" target="_blank" >RIV/00216208:11320/21:10437108 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Parameterized Algorithms for MILPs with Small Treedepth

  • Original language description

    Solving (mixed) integer (linear) programs, (M)I(L)Ps for short, is a fundamental optimisation task with a wide range of applications in artificial intelligence and computer science in general. While hard in general, recent years have brought about vast progress for solving structurally restricted, (nonmixed) ILPs: n-fold, tree-fold, 2-stage stochastic and multistage stochastic programs admit efficient algorithms, and all of these special cases are subsumed by the class of ILPs of small treedepth. In this paper, we extend this line of work to the mixed case, by showing an algorithm solving MILP in time f (a, d) poly(n), where a is the largest coefficient of the constraint matrix, d is its treedepth, and n is the number of variables. This is enabled by proving bounds on the denominators (fractionality) of the vertices of bounded-treedepth (non-integer) linear programs. We do so by carefully analysing the inverses of invertible sub-matrices of the constraint matrix. This allows us to afford scaling up the mixed program to the integer grid, and applying the known methods for integer programs. We then trace the limiting boundary of our &quot;bounded fractionality&quot; approach both in terms of going beyond MILP (by allowing non-linear objectives) as well as its usefulness for generalising other important known tractable classes of ILP. On the positive side, we show that our result can be generalised from MILP to MIP with piece-wise linear separable convex objectives with integer breakpoints. On the negative side, we show that going even slightly beyond such objectives or considering other natural related tractable classes of ILP leads to unbounded fractionality. Finally, we show that restricting the structure of only the integral variables in the constraint matrix does not yield tractable special cases.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE

  • ISBN

    978-1-57735-866-4

  • ISSN

    2159-5399

  • e-ISSN

    2374-3468

  • Number of pages

    9

  • Pages from-to

    12249-12257

  • Publisher name

    ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE

  • Place of publication

    PALO ALTO

  • Event location

    Virtuální

  • Event date

    Feb 2, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000681269803105