All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Integer Programming and Incidence Treedepth

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F19%3A00331346" target="_blank" >RIV/68407700:21240/19:00331346 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14330/19:00113725

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-030-17953-3_15" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-17953-3_15</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-17953-3_15" target="_blank" >10.1007/978-3-030-17953-3_15</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Integer Programming and Incidence Treedepth

  • Original language description

    Recently a strong connection has been shown between the tractability of integer programming (IP) with bounded coefficients on the one side and the structure of its constraint matrix on the other side. To that end, integer linear programming is fixed-parameter tractable with respect to the primal (or dual) treedepth of the Gaifman graph of its constraint matrix and the largest coefficient (in absolute value). Motivated by this, Koutecký, Levin, and Onn [ICALP 2018] asked whether it is possible to extend these result to a more broader class of integer linear programs. More formally, is integer linear programming fixed-parameter tractable with respect to the incidence treedepth of its constraint matrix and the largest coefficient (in absolute value)? We answer this question in negative. We prove that deciding the feasibility of a system in the standard form,

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Integer Programming and Combinatorial Optimization

  • ISBN

    978-3-030-17952-6

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    11

  • Pages from-to

    194-204

  • Publisher name

    Springer

  • Place of publication

    Basel

  • Event location

    Ann Arbor

  • Event date

    May 22, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000493314100015