All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Normality, nuclear squares and Osborn identities

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437371" target="_blank" >RIV/00216208:11320/21:10437371 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=NB2cEsqwMW" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=NB2cEsqwMW</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14712/1213-7243.2020.038" target="_blank" >10.14712/1213-7243.2020.038</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Normality, nuclear squares and Osborn identities

  • Original language description

    Let Q be a loop. If S &lt;= Q is such that phi(S) subset of S for each standard generator of Inn Q, then S does not have to be a normal subloop. In an LC loop the left and middle nucleus coincide and form a normal subloop. The identities of Osborn loops are obtained by applying the idea of nuclear identification, and various connections of Osborn loops to Moufang and CC loops are discussed. Every Osborn loop possesses a normal nucleus, and this nucleus coincides with the left, the right and the middle nucleus. Loops that are both Buchsteiner and Osborn are characterized as loops in which each square is in the nucleus.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Commentationes Mathematicae Universitatis Carolinae

  • ISSN

    0010-2628

  • e-ISSN

  • Volume of the periodical

    2020

  • Issue of the periodical within the volume

    61

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    20

  • Pages from-to

    481-500

  • UT code for WoS article

    000621666300006

  • EID of the result in the Scopus database

    2-s2.0-85112790161