AIM Loops and the AIM Conjecture
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F19%3A00346812" target="_blank" >RIV/68407700:21730/19:00346812 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.2478/forma-2019-0027" target="_blank" >https://doi.org/10.2478/forma-2019-0027</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/forma-2019-0027" target="_blank" >10.2478/forma-2019-0027</a>
Alternative languages
Result language
angličtina
Original language name
AIM Loops and the AIM Conjecture
Original language description
In this article, we prove, using the Mizar [2] formalism, a number of properties that correspond to the AIM Conjecture. In the first section, we define division operations on loops, inner mappings T, L and R, commutators and associators and basic attributes of interest. We also consider subloops and homomorphisms. Particular subloops are the nucleus and center of a loop and kernels of homomorphisms. Then in Section 2, we define a set Mlt Q of multiplicative mappings of Q and cosets (mostly following Albert 1943 for cosets [1]). Next, in Section 3 we define the notion of a normal subloop and construct quotients by normal subloops. In the last section we define the set InnAut of inner mappings of Q, define the notion of an AIM loop and relate this to the conditions on T, L, and R defined by satisfies TT, etc. We prove in Theorem (67) that the nucleus of an AIM loop is normal and finally in Theorem (68) that the AIM Conjecture follows from knowing every AIM loop satisfies aa1, aa2, aa3, Ka, aK1, aK2 and aK3.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
R - Projekt Ramcoveho programu EK
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Formalized Mathematics
ISSN
1426-2630
e-ISSN
1898-9934
Volume of the periodical
27
Issue of the periodical within the volume
4
Country of publishing house
PL - POLAND
Number of pages
15
Pages from-to
321-335
UT code for WoS article
000516828700001
EID of the result in the Scopus database
—