All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

AIM Loops and the AIM Conjecture

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F19%3A00346812" target="_blank" >RIV/68407700:21730/19:00346812 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.2478/forma-2019-0027" target="_blank" >https://doi.org/10.2478/forma-2019-0027</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2478/forma-2019-0027" target="_blank" >10.2478/forma-2019-0027</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    AIM Loops and the AIM Conjecture

  • Original language description

    In this article, we prove, using the Mizar [2] formalism, a number of properties that correspond to the AIM Conjecture. In the first section, we define division operations on loops, inner mappings T, L and R, commutators and associators and basic attributes of interest. We also consider subloops and homomorphisms. Particular subloops are the nucleus and center of a loop and kernels of homomorphisms. Then in Section 2, we define a set Mlt Q of multiplicative mappings of Q and cosets (mostly following Albert 1943 for cosets [1]). Next, in Section 3 we define the notion of a normal subloop and construct quotients by normal subloops. In the last section we define the set InnAut of inner mappings of Q, define the notion of an AIM loop and relate this to the conditions on T, L, and R defined by satisfies TT, etc. We prove in Theorem (67) that the nucleus of an AIM loop is normal and finally in Theorem (68) that the AIM Conjecture follows from knowing every AIM loop satisfies aa1, aa2, aa3, Ka, aK1, aK2 and aK3.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    R - Projekt Ramcoveho programu EK

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Formalized Mathematics

  • ISSN

    1426-2630

  • e-ISSN

    1898-9934

  • Volume of the periodical

    27

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    PL - POLAND

  • Number of pages

    15

  • Pages from-to

    321-335

  • UT code for WoS article

    000516828700001

  • EID of the result in the Scopus database