Commutator theory for loops
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10287308" target="_blank" >RIV/00216208:11320/14:10287308 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jalgebra.2013.08.045" target="_blank" >http://dx.doi.org/10.1016/j.jalgebra.2013.08.045</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jalgebra.2013.08.045" target="_blank" >10.1016/j.jalgebra.2013.08.045</a>
Alternative languages
Result language
angličtina
Original language name
Commutator theory for loops
Original language description
Using the Freese-McKenzie commutator theory for congruence modular varieties as the starting point, we develop commutator theory for the variety of loops. The fundamental theorem of congruence commutators for loops relates generators of the congruence commutator to generators of the total inner mapping group. We specialize the fundamental theorem into several varieties of loops, and also discuss the commutator of two normal subloops. Consequently, we argue that some standard definitions of loop theory,such as elementwise commutators and associators, should be revised and linked more closely to inner mappings. Using the new definitions, we prove several natural properties of loops that could not be so elegantly stated with the standard definitions of loop theory. For instance, we show that the subloop generated by the new associators defined here is automatically normal. We conclude with a preliminary discussion of abelianess and solvability in loops. (C) 2013 Elsevier Inc. All rights
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Algebra
ISSN
0021-8693
e-ISSN
—
Volume of the periodical
399
Issue of the periodical within the volume
399
Country of publishing house
US - UNITED STATES
Number of pages
33
Pages from-to
290-322
UT code for WoS article
000330006200016
EID of the result in the Scopus database
—