All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On extended formulations for parameterized steiner trees

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437397" target="_blank" >RIV/00216208:11320/21:10437397 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.IPEC.2021.18" target="_blank" >https://doi.org/10.4230/LIPIcs.IPEC.2021.18</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.IPEC.2021.18" target="_blank" >10.4230/LIPIcs.IPEC.2021.18</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On extended formulations for parameterized steiner trees

  • Original language description

    We present a novel linear program (LP) for the Steiner Tree problem, where a set of terminal vertices needs to be connected by a minimum weight tree in a graph G = (V, E) with non-negative edge weights. This well-studied problem is NP-hard and therefore does not have a compact extended formulation (describing the convex hull of all Steiner trees) of polynomial size, unless P=NP. On the other hand, Steiner Tree is fixed-parameter tractable (FPT) when parameterized by the number k of terminals, and can be solved in O(3k|V | + 2k|V |2) time via the Dreyfus-Wagner algorithm. A natural question thus is whether the Steiner Tree problem admits an extended formulation of comparable size. We first answer this in the negative by proving a lower bound on the extension complexity of the Steiner Tree polytope, which, for some constant c &gt; 0, implies that no extended formulation of size f(k)2cn exists for any function f. However, we are able to circumvent this lower bound due to the fact that the edge weights are non-negative: we prove that Steiner Tree admits an integral LP with O(3k|E|) variables and constraints. The size of our LP matches the runtime of the Dreyfus-Wagner algorithm, and our poof gives a polyhedral perspective on this classic algorithm. Our proof is simple, and additionally improves on a previous result by Siebert et al. [2018], who gave an integral LP of size O((2k/e)k)|V |O(1) (C) Andreas Emil Feldmann and Ashutosh Rai; licensed under Creative Commons License CC-BY 4.0

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GX19-27871X" target="_blank" >GX19-27871X: Efficient approximation algorithms and circuit complexity</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    16th International Symposium on Parameterized and Exact Computation (IPEC 2021)

  • ISBN

    978-3-95977-216-7

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    16

  • Pages from-to

  • Publisher name

    Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

  • Place of publication

    Dagstuhl

  • Event location

    Online

  • Event date

    Sep 8, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article