On Aharoni's rainbow generalization of the Caccetta-Haggkvist conjecture
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437795" target="_blank" >RIV/00216208:11320/21:10437795 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=w4lZ1p2O6f" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=w4lZ1p2O6f</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2021.112319" target="_blank" >10.1016/j.disc.2021.112319</a>
Alternative languages
Result language
angličtina
Original language name
On Aharoni's rainbow generalization of the Caccetta-Haggkvist conjecture
Original language description
For a digraph G and v is an element of V(G), let delta(+)(v) be the number of out-neighbors of v in G. The Caccetta-Haggkvist conjecture states that for all k >= 1, if G is a digraph with n = |V(G)| such that delta(+)(v) >= k for all v is an element of V(G), then G contains a directed cycle of length at most [n/k]. In Aharoni et al. (2019), Aharoni proposes a generalization of this conjecture, that a simple edge-colored graph on n vertices with n color classes, each of size k, has a rainbow cycle of length at most.n/k.. In this paper, we prove this conjecture if each color class has size Omega(k log k). (C) 2021 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
344
Issue of the periodical within the volume
5
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
4
Pages from-to
112319
UT code for WoS article
000633365200012
EID of the result in the Scopus database
2-s2.0-85100393631