All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Aharoni's rainbow generalization of the Caccetta-Haggkvist conjecture

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437795" target="_blank" >RIV/00216208:11320/21:10437795 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=w4lZ1p2O6f" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=w4lZ1p2O6f</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.disc.2021.112319" target="_blank" >10.1016/j.disc.2021.112319</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Aharoni's rainbow generalization of the Caccetta-Haggkvist conjecture

  • Original language description

    For a digraph G and v is an element of V(G), let delta(+)(v) be the number of out-neighbors of v in G. The Caccetta-Haggkvist conjecture states that for all k &gt;= 1, if G is a digraph with n = |V(G)| such that delta(+)(v) &gt;= k for all v is an element of V(G), then G contains a directed cycle of length at most [n/k]. In Aharoni et al. (2019), Aharoni proposes a generalization of this conjecture, that a simple edge-colored graph on n vertices with n color classes, each of size k, has a rainbow cycle of length at most.n/k.. In this paper, we prove this conjecture if each color class has size Omega(k log k). (C) 2021 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete Mathematics

  • ISSN

    0012-365X

  • e-ISSN

  • Volume of the periodical

    344

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    4

  • Pages from-to

    112319

  • UT code for WoS article

    000633365200012

  • EID of the result in the Scopus database

    2-s2.0-85100393631