All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Flexibility of planar graphs-Sharpening the tools to get lists of size four

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455170" target="_blank" >RIV/00216208:11320/22:10455170 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gC5wMmFvJZ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gC5wMmFvJZ</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.dam.2021.09.021" target="_blank" >10.1016/j.dam.2021.09.021</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Flexibility of planar graphs-Sharpening the tools to get lists of size four

  • Original language description

    A graph where each vertex v has a list L(v) of available colors is L-colorable if there is a proper coloring such that the color of v is in L(v) for each v. A graph is k-choosable if every assignment L of at least k colors to each vertex guarantees an L-coloring. Given a list assignment L, an L-request for a vertex v is a color c is an element of L(v). In this paper, we look at a variant of the widely studied class of precoloring extension problems from Dvorak, Norin, and Postle (J. Graph Theory, 2019), wherein one must satisfy &quot;enough&apos;&apos;, as opposed to all, of the requested set of precolors. A graph G is epsilon-flexible for list size k if for any k-list assignment L, and any set S of L-requests, there is an L-coloring of G satisfying epsilon-fraction of the requests in S. It is conjectured that planar graphs are epsilon-flexible for list size 5, yet it is proved only for list size 6 and for certain subclasses of planar graphs. We give a stronger version of the main tool used in the proofs of the aforementioned results. By doing so, we improve upon a result by Masarik and show that planar graphs without K-4(-) are epsilon-flexible for list size 5. We also prove that planar graphs without 4-cycles and 3-cycle distance at least 2 are epsilon-flexible for list size 4. Finally, we introduce a new (slightly weaker) form of epsilon-flexibility where each vertex has exactly one request. In that setting, we provide a stronger tool and we demonstrate its usefulness to further extend the class of graphs that are epsilon-flexible for list size 5. (C) 2021 The Author(s). Published by Elsevier B.V.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete Applied Mathematics

  • ISSN

    0166-218X

  • e-ISSN

    1872-6771

  • Volume of the periodical

    306

  • Issue of the periodical within the volume

    January

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    13

  • Pages from-to

    120-132

  • UT code for WoS article

    000712075000001

  • EID of the result in the Scopus database

    2-s2.0-85122508527