5-list-coloring planar graphs with distant precolored vertices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10364949" target="_blank" >RIV/00216208:11320/17:10364949 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jctb.2016.06.006" target="_blank" >http://dx.doi.org/10.1016/j.jctb.2016.06.006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jctb.2016.06.006" target="_blank" >10.1016/j.jctb.2016.06.006</a>
Alternative languages
Result language
angličtina
Original language name
5-list-coloring planar graphs with distant precolored vertices
Original language description
We answer positively the question of Albertson asking whether every planar graph can be 5-list-colored even if it contains precolored vertices, as long as they are sufficiently far apart from each other. In order to prove this claim, we also give bounds on the sizes of graphs critical with respect to 5-list coloring. In particular, if G is a planar graph, H is a connected subgraph of G and L is an assignment of lists of colors to the vertices of G such that vertical bar L(v)vertical bar >= 5 for every v is an element of V(G)V(H) and G is not L-colorable, then G contains a subgraph with O(vertical bar H vertical bar(2)) vertices that is not L-colorable.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Theory. Series B
ISSN
0095-8956
e-ISSN
—
Volume of the periodical
122
Issue of the periodical within the volume
january
Country of publishing house
US - UNITED STATES
Number of pages
42
Pages from-to
311-352
UT code for WoS article
000389788300015
EID of the result in the Scopus database
—