(3a:a)-List-Colorability of Embedded Graphs of Girth at Least Five
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10416998" target="_blank" >RIV/00216208:11320/20:10416998 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qbQNCkCI~_" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qbQNCkCI~_</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/18M1214056" target="_blank" >10.1137/18M1214056</a>
Alternative languages
Result language
angličtina
Original language name
(3a:a)-List-Colorability of Embedded Graphs of Girth at Least Five
Original language description
A graph G is list (b : a)-colorable if for every assignment of lists of size b to vertices of G there exists a choice of an a-element subset of the list at each vertex such that the subsets chosen at adjacent vertices are disjoint. We prove that for every positive integer a, the family of minimal obstructions of girth at least five to list (3a : a)-colorability is strongly hyperbolic, in the sense of the hyperbolicity theory developed by Postle and Thomas. This has a number of consequences; e.g., if a graph of girth at least five and Euler genus g is not list (3a : a)-colorable, then G contains a subgraph with O(g) vertices which is not list (3a : a)-colorable.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-04611S" target="_blank" >GA17-04611S: Ramsey-like aspects of graph coloring</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
—
Volume of the periodical
34
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
29
Pages from-to
2137-2165
UT code for WoS article
000600645000007
EID of the result in the Scopus database
2-s2.0-85096355829