All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Planar graphs of odd-girth at least 9 are homomorphic to the Petersen graph

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F08%3A00100146" target="_blank" >RIV/00216208:11320/08:00100146 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Planar graphs of odd-girth at least 9 are homomorphic to the Petersen graph

  • Original language description

    Let $G$ be a graph and let $c: V(G)tobinom{[5]}{2}$ be an assignment of $2$-element subsets of the set $[5]$ to the vertices of $G$ such that for every edge $vw$, the sets $c(v)$ and $c(w)$ are disjoint. We call such an assignment a {em $(5,2)$-coloring}. A graph is (5,2)-colorable if and only if it has a homomorphism to the Petersen graph. The {em odd-girth} of a graph $G$ is the length of the shortest odd cycle in $G$ ($infty$ if $G$ is bipartite). We prove that every planar graph of odd-girth atleast $9$ is $(5,2)$-colorable, and thus it is homomorphic to the Petersen graph. Also, this implies that such graphs have fractional chromatic number at most $5over2$. As a special case, this result holds for planar graphs of girth at least $8$.

  • Czech name

    Rovinné grafy s lichým obvodem aspoň 9 jsou homomorfní Petersenovu grafu

  • Czech description

    Nechť $G$ je graf a nechť $c: V(G)tobinom{[5]}{2}$ je přiřazení dvouprvkových podmnožin množiny $[5]$ vrcholům $G$ tak, že pro každou hranu $vw$ jsou množiny $c(v)$ a $c(w)$ disjunktní. Takové přiřazení nazveme {em (5,2)-obarvení}. Graf je $(5,2)$-obarvitelný, právě když má homomorfismus do Petersenova grafu. {em Lichý obvod} grafu $G$ je délka nejkratšího lichého cyklu (nebo $infty$ když $G$ je bipartitní). Ukážeme, že každý rovinný graf lichého obvodu aspoň 9 je (5,2)-obarvitelný, a tudíž má homomorfismus do Petersenova grafu. Z toho také plyne, že takové grafy mají zlomkovou barevnost nejvýš $5/2$. Speciálně se tento výsledek vztahuje na rovinné grafy s obvodem aspoň 8.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Discrete Mathematics

  • ISSN

    0895-4801

  • e-ISSN

  • Volume of the periodical

    22

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    24

  • Pages from-to

  • UT code for WoS article

    000256452900010

  • EID of the result in the Scopus database