Density of 5/2-critical graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10385414" target="_blank" >RIV/00216208:11320/17:10385414 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00493-016-3356-3" target="_blank" >https://doi.org/10.1007/s00493-016-3356-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00493-016-3356-3" target="_blank" >10.1007/s00493-016-3356-3</a>
Alternative languages
Result language
angličtina
Original language name
Density of 5/2-critical graphs
Original language description
A graph G is 5/2-critical if G has no circular 5/2-coloring (or equivalently, homomorphism to C (5)), but every proper subgraph of G has one. We prove that every 5/2-critical graph on n ae 4 vertices has at least edges, and list all 5/2-critical graphs achieving this bound. This implies that every planar or projective-planar graph of girth at least 10 is 5/2-colorable.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA14-19503S" target="_blank" >GA14-19503S: Graph coloring and structure</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Combinatorica
ISSN
0209-9683
e-ISSN
—
Volume of the periodical
37
Issue of the periodical within the volume
5
Country of publishing house
DE - GERMANY
Number of pages
24
Pages from-to
863-886
UT code for WoS article
000418056000004
EID of the result in the Scopus database
2-s2.0-84991609088