PERIODIC REPRESENTATIONS IN SALEM BASES
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437978" target="_blank" >RIV/00216208:11320/21:10437978 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=mAC6l5eXXJ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=mAC6l5eXXJ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11856-021-2123-3" target="_blank" >10.1007/s11856-021-2123-3</a>
Alternative languages
Result language
angličtina
Original language name
PERIODIC REPRESENTATIONS IN SALEM BASES
Original language description
We prove that all algebraic bases beta allow an eventually periodic representation of the elements of Q(beta) with a finite alphabet of digits A. Moreover, the classification of bases allowing that those representations have the so-called weak greedy property is given. The decision problem whether a given pair (beta, A) allows eventually periodic representations proves to be rather hard, for it is equivalent to a topological property of the attractor of an iterated function system.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ17-04703Y" target="_blank" >GJ17-04703Y: Quadratic forms and numeration systems over number fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Israel Journal of Mathematics
ISSN
0021-2172
e-ISSN
—
Volume of the periodical
2021
Issue of the periodical within the volume
241
Country of publishing house
IL - THE STATE OF ISRAEL
Number of pages
13
Pages from-to
83-95
UT code for WoS article
000631758400002
EID of the result in the Scopus database
2-s2.0-85102892620