Relative error streaming quantiles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438016" target="_blank" >RIV/00216208:11320/21:10438016 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1145/3452021.3458323" target="_blank" >https://doi.org/10.1145/3452021.3458323</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3452021.3458323" target="_blank" >10.1145/3452021.3458323</a>
Alternative languages
Result language
angličtina
Original language name
Relative error streaming quantiles
Original language description
Approximating ranks, quantiles, and distributions over streaming data is a central task in data analysis and monitoring. Given a stream of n items from a data universe U equipped with a total order, the task is to compute a sketch (data structure) of size poly (log(n), 1/ϵ). Given the sketch and a query item y in U, one should be able to approximate its rank in the stream, i.e., the number of stream elements smaller than or equal to y. Most works to date focused on additive ϵ n error approximation, culminating in the KLL sketch that achieved optimal asymptotic behavior. This paper investigates multiplicative (1+-ϵ)-error approximations to the rank. Practical motivation for multiplicative error stems from demands to understand the tails of distributions, and hence for sketches to be more accurate near extreme values. The most space-efficient algorithms due to prior work store either O(log(ϵ^2 n) / ϵ^2) or O(log^3(ϵ n) / ϵ) universe items. This paper presents a randomized algorithm storing O(log^{1.5} (ϵ n)/ϵ) items, which is within an O(sqrt{log(ϵ n)}) factor of optimal. The algorithm does not require prior knowledge of the stream length and is fully mergeable, rendering it suitable for parallel and distributed computing environments. (C) 2021 ACM.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
ISBN
978-1-4503-8381-3
ISSN
—
e-ISSN
—
Number of pages
13
Pages from-to
96-108
Publisher name
Association for Computing Machinery
Place of publication
Neuveden
Event location
Virtual (Xi'an, Shaanxi, China)
Event date
Jun 20, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—