All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Relative error streaming quantiles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438016" target="_blank" >RIV/00216208:11320/21:10438016 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1145/3452021.3458323" target="_blank" >https://doi.org/10.1145/3452021.3458323</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3452021.3458323" target="_blank" >10.1145/3452021.3458323</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Relative error streaming quantiles

  • Original language description

    Approximating ranks, quantiles, and distributions over streaming data is a central task in data analysis and monitoring. Given a stream of n items from a data universe U equipped with a total order, the task is to compute a sketch (data structure) of size poly (log(n), 1/ϵ). Given the sketch and a query item y in U, one should be able to approximate its rank in the stream, i.e., the number of stream elements smaller than or equal to y. Most works to date focused on additive ϵ n error approximation, culminating in the KLL sketch that achieved optimal asymptotic behavior. This paper investigates multiplicative (1+-ϵ)-error approximations to the rank. Practical motivation for multiplicative error stems from demands to understand the tails of distributions, and hence for sketches to be more accurate near extreme values. The most space-efficient algorithms due to prior work store either O(log(ϵ^2 n) / ϵ^2) or O(log^3(ϵ n) / ϵ) universe items. This paper presents a randomized algorithm storing O(log^{1.5} (ϵ n)/ϵ) items, which is within an O(sqrt{log(ϵ n)}) factor of optimal. The algorithm does not require prior knowledge of the stream length and is fully mergeable, rendering it suitable for parallel and distributed computing environments. (C) 2021 ACM.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems

  • ISBN

    978-1-4503-8381-3

  • ISSN

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    96-108

  • Publisher name

    Association for Computing Machinery

  • Place of publication

    Neuveden

  • Event location

    Virtual (Xi&apos;an, Shaanxi, China)

  • Event date

    Jun 20, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article