Relative Error Streaming Quantiles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475244" target="_blank" >RIV/00216208:11320/23:10475244 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=JDxgW_EUIg" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=JDxgW_EUIg</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3617891" target="_blank" >10.1145/3617891</a>
Alternative languages
Result language
angličtina
Original language name
Relative Error Streaming Quantiles
Original language description
Estimating ranks, quantiles, and distributions over streaming data is a central task in data analysis and monitoring. Given a stream of n items from a data universe equipped with a total order, the task is to compute a sketch (data structure) of size polylogarithmic in n. Given the sketch and a query item y, one should be able to approximate its rank in the stream, i.e., the number of stream elements smaller than or equal to y. Most works to date focused on additive en error approximation, culminating in the KLL sketch that achieved optimal asymptotic behavior. This article investigates multiplicative (1 +/- epsilon)-error approximations to the rank. Practical motivation for multiplicative error stems from demands to understand the tails of distributions, and hence for sketches to be more accurate near extreme values. The most space-efficient algorithms due to prior work store either O(log(epsilon(2)n)/epsilon 2) or O(log(3) (epsilon n)/epsilon) universe items. We present a randomized sketch storing O(log(1.5) (epsilon n)/epsilon) items that can (1 +/- epsilon)-approximate the rank of each universe item with high constant probability; this space bound is within an O(root log(epsilon n)) factor of optimal. Our algorithm does not require prior knowledge of the stream length and is fully mergeable, rendering it suitable for parallel and distributed computing environments.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX19-27871X" target="_blank" >GX19-27871X: Efficient approximation algorithms and circuit complexity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of the ACM
ISSN
0004-5411
e-ISSN
1557-735X
Volume of the periodical
70
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
48
Pages from-to
30
UT code for WoS article
001091490700003
EID of the result in the Scopus database
—