On longest palindromic subwords of finite binary words
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438287" target="_blank" >RIV/00216208:11320/21:10438287 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5axlVo26TK" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5axlVo26TK</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2021.112493" target="_blank" >10.1016/j.disc.2021.112493</a>
Alternative languages
Result language
angličtina
Original language name
On longest palindromic subwords of finite binary words
Original language description
In a recent paper, Mullner and Ryzhikov posed a question about palindromic subwords of finite binary words which can be rephrased as follows: Given four equally long binary words w(1), w(2), w(3), w(4) of total length n, what is the size of a longest palindrome p = qq(R) such that (i) q is a subword of w(1)w(2) and also of (w(3)w(4))(R) or (ii) q is a subword of w(2)w(3) and also of (w(4)w(1))(R)? Milllner and Ryzhikov conjectured that the answer is at least n/2. We disprove this conjecture, constructing sequences of words w(1), w(2), w(3), w(4) such that the longest palindromes have size 15n/32 + o(n). Additionally, we show that the longest palindromes have size at least 3n/8. (C) 2021 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA21-32817S" target="_blank" >GA21-32817S: Algorithmic, structural and complexity aspects of geometric configurations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
344
Issue of the periodical within the volume
9
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
112493
UT code for WoS article
000674500300029
EID of the result in the Scopus database
2-s2.0-85107409509