All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On longest palindromic subwords of finite binary words

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438287" target="_blank" >RIV/00216208:11320/21:10438287 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5axlVo26TK" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5axlVo26TK</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.disc.2021.112493" target="_blank" >10.1016/j.disc.2021.112493</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On longest palindromic subwords of finite binary words

  • Original language description

    In a recent paper, Mullner and Ryzhikov posed a question about palindromic subwords of finite binary words which can be rephrased as follows: Given four equally long binary words w(1), w(2), w(3), w(4) of total length n, what is the size of a longest palindrome p = qq(R) such that (i) q is a subword of w(1)w(2) and also of (w(3)w(4))(R) or (ii) q is a subword of w(2)w(3) and also of (w(4)w(1))(R)? Milllner and Ryzhikov conjectured that the answer is at least n/2. We disprove this conjecture, constructing sequences of words w(1), w(2), w(3), w(4) such that the longest palindromes have size 15n/32 + o(n). Additionally, we show that the longest palindromes have size at least 3n/8. (C) 2021 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA21-32817S" target="_blank" >GA21-32817S: Algorithmic, structural and complexity aspects of geometric configurations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete Mathematics

  • ISSN

    0012-365X

  • e-ISSN

  • Volume of the periodical

    344

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    10

  • Pages from-to

    112493

  • UT code for WoS article

    000674500300029

  • EID of the result in the Scopus database

    2-s2.0-85107409509